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Telegrapher’s equations with variable propagation speeds
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All derivations of the one-dimensional telegrapher’s equation, based on the persistent random
walk model, assume a constant speed of signal propagation. We generalize here the model to allow for
a variable propagation speed and study several limiting cases in detail. We also show the connections
of this model with anomalous diffusion behavior and with inertial dichotomous processes.

PACS number(s): 05.40.4+j, 02.50.Ey

The persistent random walk, hereafter referred to as
PRW, was suggested first by Fiirth [1] and Taylor [2] as
a model allowing one to incorporate a simple analogy of
momentum in the framework of diffusion theory. When
one starts from a one-dimensional PRW on a lattice and
passes to the continuum limit one finds that the prob-
ability density function for the displacement at time ¢
satisfies a telegrapher’s equation instead of the diffusion
equation obtained from the ordinary random walk pic-
ture.

The telegrapher’s equation is considered a simple gen-
eralization of the diffusion equation that overcomes con-
ceptual problems related to the infinite speed of signal
propagation. The telegrapher’s equation possesses a fi-
nite propagation speed which is bounded by a constant.
In this paper we will consider a nonuniform lattice and
explore the consequences of having a nonconstant prop-
agation speed.

Let us start with a one-dimensional PRW on a lattice.
Each step length is Az and has duration At. Let p be
the probability that two successive steps are given in the
same direction and define the probability of a reversal
to be ¢ = 1 — p. In the diffusion limit Az and At go
to zero in such a way that the ratio Az/At tends to a
finite quantity ¢ having the dimensions of velocity (the
speed of signal propagation). As we have mentioned it is
generally assumed that c is a constant which corresponds
to a uniform lattice. This is not the case here, since we
will assume that c is a function of = and ¢

Az
A c(z,t)

Let a(z,t) [b(z,t)] denote the probability density func-
tion for the position of the random walker at time ¢ while
moving in the positive [negative] = direction. It is easily
shown from the set of difference equations satisfied by
a(z,t) and b(z,t) in the lattice picture [3] that, if in the
continuum limit we assume

At
=——~0At2,
p=1- 221 o(a0?)

(Az, At — 0). (1)

where T is a constant having dimensions of time, then
the assumption (1) leads to the following set of partial
differential equations:
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da da 1
5 = —c(m,t)b—m + ﬁ(b - a), (2)
ab ab 1

We will assume that Eqs. (2) and (3) are to be solved
subject to the initial conditions

a(z,0) = b(x,0) = %6(2 — 20). (4)

Equations (2) and (3) can be combined into a single
second-order differential equation for the total probabil-
ity density function

p(z,t) = a(z,t) + b(x,t) (5)
of the random walker. This equation reads

3[ 1 Bp] 1 dp O

_ 9
ot | om0 ot Tc(m,t)a—a—m[c(m’t)éz]’ (6)

and the initial conditions are

p(z,0) = é6(z — zo), (7)
dp _
" . =0. (8)

When c(z,t) = c is a constant velocity one recovers
from Eq. (6) the ordinary telegrapher’s equation

9% 106p ,8%

p 16p _ .0°p 9
9z T Tt~ € 8a2 (9)

There are two more cases in which Eq. (6) leads to
a telegrapher’s equation. In one of these cases c only
depends on x:

c=c(x)
and Eq. (6) reduces to
8p 108p 7] op
%2 T = c(a:)% [c(:v)—a—z] . (10)
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This equation can be written in the form of the ordi-
nary telegrapher’s equation. In effect, if ¢(z) is such that
1/c(x) is an integrable function over the real line, the

new coordinate
x da:l
= —_— 11
v= [ Fe (1)

converts Eq. (10) into the following equation:

&p 18p 8%

52 T Tot - oy (12)

Therefore the solution to Eq. (10) under the initial con-
ditions (7) and (8) is [3,4]
/.’D dxl
k) c(z,)

e~t/2T
m{zs (-
+% (I° [A(za;"t)] + ,\(;, ph [,\ng,t)])

L)

where O(x) is the Heaviside step function, Ip,(z) are
modified Bessel functions and

p(z,t) =

\ot) = [ ([ 7_))] e

Another situation where it is still possible to get a tele-
grapher’s equation is when c is only a function of t

c=c(t).

In this case the change of time scale

T= /t c(t') dt’ (15)

converts Eq. (6) into the following telegrapher’s equation
with time varying coefficients:

0%  x(r)dp _ 0%

or? T 8r 0z2’ (16)

where

x(r) = (17)

c(t(T))
and the function #(7) is implicitly defined by Eq. (15).
It is very difficult to find an exact solution to Eq. (16)
for arbitrary x(7). Nevertheless, it is possible to find an
asymptotic solution to Eq. (16) valid when T is small.

To this end we first Fourier transform Eq. (16) with the
result

p =0, (18)

where

o = [ ot

—00

We now write T' = €T’ where € > 0 is a dimensionless
small parameter and look for an asymptotic solution in
the form of a WKB series

P(w,t) ~ exp [ Ze"S w, t)]

The substitution of this equation into Eq. (18) yields

Bw,7) ~ exp {—eT'uﬂ |5+ o)}

and its Fourier inversion reads

1 z?
p(z,T) ~ \/“'2;‘—% exp [—m—)] ) (19)

where

T dz
o%(1) = .
(7) / 5 (20)

We note that the same result could have been obtained
in a more heuristic way. In effect, when T is small we
may assume that the telegrapher’s equation (16) is ap-
proximated by the diffusion equation

x(r)9p _ 8%
T or - 8z (21)
whose solution is precisely given by Eq. (19). In fact,

the WKB procedure outlined above provides a proof of
the soundness of the approximation leading to Eq. (21)
which, in turn, is related to the central limit theorem.
Let us now write Eq. (19) in the original time scale t.
From the definition of x(7) given by Eq. (17) we see that
the “variance” 0(7) can be written as [cf. Eq. (20)]

(727'= TC zZ A
(7) /o(t())d,

where t(2) is implicitly defined by

t(z)
z= / c(t')dt'.
0

Combining these two equations we get

oi(r)=1= tc' !
) =r= [ ey

Hence
-1/2
(5 etya) 22
p(z,t) ~ By~ S T o fot c(t’)dt'] . (22)

Although this approximation has been derived when
T is small, it is also known that the same approximation
works for any value of T provided that ¢ > T [6]. There-



3854 JAUME MASOLIVER AND GEORGE H. WEISS 49

fore Eq. (22) is the asymptotic solution to Eq. (6) when
c=c(t)and t > T.
Let us now suppose that as t = oo

c(t) ~ t*, (23)

then

ta+l

a?(t) =/0 c(t)dt' ~ Py (24)

We observe that this kind of variance corresponds to
anomalous diffusion behavior, where if a > 0 we obtain
superdiffusive behavior while —1 < a < 0 corresponds to
subdiffusion.

We note that subdiffusion has been associated with
the persistent random walk with long waiting times [7,8]
while a model for superdiffusion seems to be difficult to
obtain [10] although it has been shown that free iner-
tial dichotomous processes have a superdiffusive behavior
characterized by [4,9]

o?(t) ~ t3.

We see that the model outlined above shows that the
persistent random walk can lead to anomalous diffusion
behavior allowing for both subdiffusion and superdiffu-
sion.

Another interesting feature of the time-varying tele-
grapher’s equation (16) is its closed relationship with di-
chotomous inertial processes. We have recently found [5]
that for inertial dichotomous processes of the form

X +B8X = F(t), (25)

where F(t) is dichotomous Markov noise alternately tak-
ing on values +c¢ with an exponential switch density
¥(t) = (1/2T) exp(—t/2T), the marginal density p(z,t)
of the displacement obeys the following telegrapher’s
equation:

Qz_+(l_5 e P )81’ cz(l

_ 2 p
Bt\2
e =) 5 = 3 ‘) (26)

For the undamped case, 8 = 0, this equation reads
8%p 1 9p _ 2 23 D
- — t 27
atz * (T ) ot~ C ' Bzz @7

The similarity between these equations and Eq. (16)
is better seen if we go back to the original time scale ¢.
In this scale Eq. (16) reads

w5

a2 ' |T  c(t)

2.0 %P

= c“(t) pcs (28)
We thus see from Eqs. (26)—(28) that the equation for
the marginal density p(z,t) of the inertial process (25)
coincides with the equation for the probability density
function of a PRW on a line with a variable speed of
signal propagation bounded by

oft) = (1 — e Bt
() =51 ) (29)

in the case of damped motion, and

c(t) =ct (30)

in the case of free motion.

We finally note that this analogy might open an al-
ternative way to study the difficult problem of finding
marginal probability density functions for the displace-
ment of inertial processes. This alternative procedure
would consist in looking for an equivalent persistent ran-
dom walk with a variable speed of signal propagation
conveniently chosen. This point is under investigation.
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